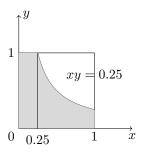

has real solutions?

## Solution:

The equation has real roots if and only if:

$$1 - 4AB > 0$$
 i.e.  $AB < \frac{1}{4}$ .


This area is shown here:



Since (A, B) is uniformly chosen in the square we can say that probability of having <u>real roots</u> is

$$P(R) = \frac{\text{area of the shaded region}}{\text{area of the square}}$$
$$= \frac{\text{area of the shaded region}}{1}$$

To find the area of the shaded region we can set up the following integral:



$$Area = \frac{1}{4} + \int_{\frac{1}{4}}^{1} \frac{1}{4x} dx$$
$$= \frac{1}{4} + \frac{1}{4} \left[ \ln(x) \right]_{\frac{1}{4}}^{1}$$
$$= \frac{1}{4} + \frac{1}{4} \ln 4$$